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Solubilization of Phosphorus by Soil

Microorganisms

David L. Jones and Eva Oburger

7.1 Introduction

Agricultural production remains highly reliant on the application of phosphorus (P)

fertilizers derived from phosphate rock. Due to increasing demand and dwindling

stocks, it is predicted that current global reserves of phosphate rock may be depleted

within 50–100 years (Cordell et al. 2009). Furthermore, continued agricultural

expansion has led to co-saturation of many ecosystems with both N and P, resulting

in the degradation of terrestrial, freshwater and marine resources (Tilman et al.

2001). This concern has highlighted the imperative need to better understand the

plant–soil–microbial P cycle, with an aim of reducing our reliance on mineral

fertilizers. This has led to increased interest in the harnessing of microorganisms

to support P cycling in agroecosystems. It is well known that some microbes in soil

have the potential to greatly enhance the rate of organic P (Po) or inorganic (Pi)

cycling (i.e. by solubilizing insoluble organic- and mineral-bound P). This chapter

aims to identify which P solubilizing organisms (PSM) exist in soil, the types of

P they can utilize, the mechanisms by which this occurs and the potential for

managing them in an agricultural context. Our aim is to encompass all types of

soil microorganisms; however, we will not cover mycorrhizas as these are compre-

hensively covered by Jansa et al. (2011).
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7.2 P in the Soil Environment

Compared to other essential macronutrients (with the exception of N), P is one of

the less-abundant elements in the lithosphere (0.1% of total). However, sufficient P

nutrition is of crucial importance for all microorganisms due to its central role in

energy transfer (e.g. ATP), cell structure (phospholipids), metabolism and signaling

(see B€unemann et al. 2011; Frossard et al. 2011). In soils, concentrations of

available P in soil solution are typically low (<0.01 to 1 mg L�1 in highly fertile

soils) due to the comparatively low content of P in the parent material, but also due

to the high reactivity of Pi that results in strong retention by the soil’s mineral

matrix. This has led to microorganisms developing a wide range of strategies to

enhance P availability in soil. Although plants can only take up Pi (i.e. HPO4
2�,

H2PO4
�), fungi and bacteria can also potentially take up low molecular weight

(LMW) organic P (Po) (e.g. sugar-P; Schw€oppe et al. 2003). In contrast, protozoa

can take up and assimilate high molecular weight (HMW) Po, implying that there

are only a few microbially unavailable organic P pools in soil and suggesting that

different P sources can potentially provide ecological niches for different species

(Foster and Dormaar 1991). To date, most research has focussed on the biological

manipulation of Pi availability in soil rather than Po.

In a recent review of P chemistry in soils, Sims and Pierzynski (2005) identified

the major processes of the soil P cycle that affect soil solution P concentrations as

(1) dissolution–precipitation (mineral equilibria), (2) sorption–desorption (interactions

between P in solution and soil solid surfaces), and (3) mineralization–immobilization

(biologically mediated conversions of P between inorganic and inorganic forms).

With a significant proportion of total soil P being organically bound, the role of

microorganisms in P turnover should not be underestimated. Furthermore, microbes

(like plants) actively or passively release protons, CO2 and secondary organic

metabolites (e.g. sugars, organic acid anions, amino acids, siderophores, enzymes,

phenols) that may all contribute to the solubilization of P from soil minerals (via

processes 1 and 2). Overall, between 1–50% of soil bacteria and 0.5–0.1% of soil

fungi can be classified as P-solubilizing microorganisms (PSM) (Gyaneshwar et al.

2002; Kucey et al. 1989). Although the number of bacteria in soil classed as PSM

generally outnumber those of fungi, the fungal isolates generally exhibit a greater

P-solubilizing capacity in both liquid and solid media (Banik and Dey 1982;

Gyaneshwar et al. 2002).

7.2.1 Sources of Soil P Capable of Microbial Solubilization

The chemical and physical form of P in soil is clearly an important regulator of the

efficiency (i.e. gross release and/or solubilization) of PSM to mobilize P bound in

the soil’s solid phase. For example, phosphate rock contains different types of P

minerals with variable solubility. Typically, PSM are selected for their ability to

170 D.L. Jones and E. Oburger



dissolve phosphate rock in vitro; however, phosphate rock may not reflect the form

of P found in many soils. This is probably one of the main reasons why PSM

show differential responses in situ. Here, we briefly describe the dominant forms of

P in soil.

7.2.1.1 Inorganic P

Total P content in top soils (0–15 cm) typically ranges from 50 to 3,000 mg kg�1

depending on parent material, soil type, vegetation cover and soil management

(Sims and Pierzynski 2005), with Pi comprising 35–70% of total soil P (Sample

et al. 1980). The chemical forms of P in soil differ not only with parent material, soil

pH and vegetation cover, but also with time and the extent of pedogenesis (Walker

and Syers 1976; Foth and Ellis 1997; Fig. 7.1). The organic P pool increases with

soil development but tends to decline again in highly weathered, older soils.

Consequently, soil development and therefore the distribution of P between the

Po and Pi pools, as well as the composition of P forms, have a major impact on P

accessibility for the microbial community, which ultimately determines the success

of PSM in the field.

Calcium-phosphates (mainly different forms of apatites, such as fluoroapatite

[Ca5(PO4)3F], hydroxyapatite [Ca5(PO4)3OH], and francolites [carbonate-fluorapatites

of variable chemical composition (Ca, Mg, Sr, Na)10(PO4, SO4, CO3)6F2�3];

Benmore et al. 1983) represent the primary mineral source of Pi in unweathered

or moderately weathered soils with neutral to alkaline pH, whereas Fe and Al
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Fig. 7.1 Relative distribution of the major forms of soil P as related to soil development and the

major US Soil Taxonomy Orders over a timeframe of millions of years. Adapted from Foth and

Ellis (1997)
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phosphates and Pi bound and/or occluded by Fe and Al oxy(hydr)oxides predomi-

nate in acidic and more progressively weathered soils (Sims and Pierzynski 2005).

Due to the increasing stability of Ca-P minerals at acidic pH, localized acidifi-

cation by PSM can result in the solubilization of Ca phosphates and the release of Pi
(see also Sect. 7.3.1). Consequently, various acidifying PSM have been applied

to accelerate dissolution of phosphate rock (i.e. collective term for igneous, meta-

morphous or marine sedimentary rock containing Ca-P-bearing minerals) prior to

addition to soil (e.g. through the addition of microbial consortia in composts or via

addition of individual PSM; Arcand and Schneider 2006; Odongo et al. 2007; Aria

et al. 2010).

In neutral and particularly in acidic soils, Al and Fe oxides and hydroxides exert

a great impact on P availability, because various identified Fe and Al phosphates,

such as wavellite [Al3(OH)3(PO4)2·5H2O], variscite (AlPO4·2H2O), strengite

(FePO4·2H2O), etc. (for an extensive review see Harris 2002) are generally rare

in occurrence. Due to the increased positive surface charge of the Fe and Al oxides

with decreasing pH, strong covalent bonds (chemisorption) are formed with the

negatively charged P, rendering it rather recalcitrant to exchange reactions. Never-

theless, LMW organic anions (e.g. gluconate, oxalate, etc.) released by PSM are

capable of competing with Pi for sorption sites. Also, changes in pH might directly

or indirectly affect the oxides’ surface potential and consequently Pi solubility (see

also Sects. 7.3.1 and 7.3.2).

7.2.1.2 Organic P

Soil Organic Matter

On average, between 30% and 65% of total P is present as Po in mineral soils. In

organic soils (>20–30% organic matter), Po can approach up to 90% of the total P.

The main identified Po compounds in soil are inositol phosphates, phospholipids

and nucleic acids (Quiquampoix and Mousain 2005; Turner et al 2002). The

abundance of inositol phosphates is highly variable; however, they frequently

represent the dominant form of Po in soil (�80% of Po; Dalal 1977). They comprise

a sequence of phosphate monoesters, from inositol monophosphate to insositol

hexakisphosphate in various stereoisomeric variations (myo, scyllo, neo, D-chiro)
(Celi and Barberis 2005). They are characterized by high acidity and are often

found as components of polymers or insoluble complexes with proteins and lipids

(Harrison 1987). The stability of inositol phosphates is closely linked to the number

of phosphate groups, rendering esters of higher order more recalcitrant to bio-

degradation and consequently more abundant. The most common stereoisomer in

soil is myo-inositol hexakisphosphate (also known as phytic acid).

Phospholipids usually comprise 0.5–7.0% of total Po (Dalal 1977), with phos-

phoglycerides being the most dominant form. Nucleic acids and their derivatives

account for less than 3% of total Po; they are rapidly mineralized, re-synthesized,

combined with other soil constituents or incorporated into microbial biomass
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(Anderson and Malcolm 1974). Other, less abundant forms of Po include sugar-P

(Anderson 1961), monophosphorylated carboxylic acids (Anderson and Malcolm

1974) and teichoic acids (a major cell wall component of many Gram-positive

bacteria; Zhang et al. 1998).

A major characteristic of P biogeochemistry is that only 1% of the total soil P

(ca. 400–4,000 kg P ha�1 in the top 30 cm) is incorporated into living plant

biomass during each growing season (ca. 10–30 kg P ha�1), reflecting its low

availability for plant uptake (Blake et al. 2000; Quiquampoix and Mousain 2005).

Concentrations of microbial P in soils can range between 0.75 (sandy Spodosol,

fertilized pine plantation) and 106 mg kg�1 (calcaric Regosol, permanent grass-

land) in mineral top soils and between 50 (haplic Podzol, Norway spruce forest)

and 169 mg kg�1 (typic Udivitrand, indigenous New Zealand forest) in organic

litter layers, and have been found to comprise between 0.5% and 26% of total

soil P (Oberson and Joner 2005). Microbial P generally decreases with increasing

soil depth and decreasing soil organic matter (SOM) content. The P-containing

compounds in microorganisms are reviewed extensively elsewhere (B€unemann

et al. 2011). Briefly, P-containing compounds in bacteria and fungi have been

found to include nucleic acids (30–65% of total microbial P), phospholipids,

acid-soluble Pi and Po compounds (i.e. phosphate esters, phosphorylated coen-

zymes, 15–20%), polyphosphates, as well as teichoic acid (only Gram-positive

bacteria). Both polyphosphates and teichoic acid have been reported to serve as P

storage compounds (Alexander 1977; G€achter and Meyer 1993). Several authors

have reported that immobilization of P by microbes is regulated more by C

limitation than by P limitation (B€unemann et al. 2004; Oehl et al. 2001a). There-

fore, P concentrations in the microbial biomass seem to be closely linked to C

dynamics in soil (Achat et al. 2009). Fertilization with P often results in a decline in

microbial P (Clarholm 1993; Grierson et al. 1998), whereas other authors have

reported the opposite trend (Joergensen and Scheu 1999) or observed rather small

or no effects (B€unemann et al. 2004). Furthermore, apart from substrate-driven

changes, it appears that seasonal variations in microbial P are mostly related to

changes in gravimetric water content in the soil (Chen et al. 2003), causing reduced

microbial biomass P during dry periods.

Organic Soil Additives

In an effort to enhance soil quality and divert waste from landfill, the application of

organic waste (e.g. treated municipal sewage sludge – so-called biosolids, compost,

animal manures) to land has significantly increased in recent years. Organic soil

amendments may increase P nutrition of plants and microbes; however, P avail-

ability in these heterogeneous materials is highly dependent on the chemical forms

of P present, as well as on the complex interaction of the added material with the

soil. There is increasing interest in the potential beneficial interaction of biofertili-

zers (i.e. PSM) with these organic wastes to provide optimal nutrient delivery to

crops. Synchrotron-based analysis of selected biosolids and manure originated from
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various animal stocks revealed that P in biosolids was mainly present as Pi in the

form of variscite (Al-P, 86% of total P) and the less-soluble hydroxylapatite (Ca-P,

14%). Manure contained dicalcium phosphate dehydrate (12–65%), struvite

(ammonium magnesium phosphate, 12–68%) and variscite (0–18%) (Ajiboye

et al. 2007). Organic P was mainly present as Ca-phytate (20–70%) (Ajiboye

et al. 2007). The Pi fraction in compost is bound to Ca as apatite or octacalcium-

phosphates (Frossard et al. 2002). Furthermore, the distribution of Pi between Al, Fe

and Ca fractions in organic amendments also depends on further additives such as

lime and metal salts [e.g. FeCl3, Al2(SO4)3]. Despite their reducing effect on

potential heavy metal toxicity, these additives have been found to effectively

reduce P solubility (Maguire et al. 2006). Metal salts induce P sorption to pre-

cipitated Al or Fe hydroxides rather than immobilization as Al or Fe phosphate. The

addition of lime induces the formation of recalcitrant Ca phosphates (e.g. hydrox-

ylapatite, tricalcium phosphate) and, consequently, reduces P sorption to Fe

hydroxide surfaces (Shober and Sims 2009). The solubility of P in organic soil

amendments when applied to soils will be mainly governed by the soil solution

equilibrium and the soil and substrate pH, rendering Fe and Al phosphates more,

and Ca phosphates less, recalcitrant with decreasing pH. The chemical form of P in

the biosolids can also be manipulated to improve their use in the field (e.g. through

the addition of stabilizing agents such as CaO, FeSO4 etc.; Huang et al. 2008).

Nevertheless, despite being an additional potential P source, organic amendments

provide a significant amount of easily available carbon and nitrogen, resulting in an

almost direct response in increasing microbial activity (biomass build up, turnover,

respiration and substrate mineralization) (Giller et al. 1998; Kao et al. 2006; Saha

et al. 2008), accelerating dynamics not only in C- and N-, but also in P cycling. The

increasing microbial activity may potentially solubilize organic as well as inorganic

P contained in the additives, but also P forms present in the indigenous soil.

7.3 P-Solubilizing Mechanisms

Availability of Pi in soil is mainly governed by the dissolution properties of the P-

bearing minerals (which are determined largely by pH) as well as by solution

equilibrium reactions (sorption and desorption). In contrast, the availability of P

derived from Po is mainly governed by microbial activity (mineralization and

enzymatic hydrolysis). Like higher plants, microorganisms have the potential to

modify their immediate chemical environment via the uptake and release of organic

and inorganic ions and molecules. The main P solubilization mechanisms employed

by soil microorganisms include: (1) release of complexing or mineral dissolving

compounds (e.g. organic acid anions, siderophores, protons, hydroxyl ions, CO2),

(2) liberation of extracellular enzymes (biochemical Po mineralization) and (3) the

release of Po during substrate degradation (biological Po mineralization) (McGill

and Cole 1981). P incorporated in the microbial biomass may be temporarily

immobilized but remains in a bioavailable form that can be released via microbial
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turnover (re-mineralization). Therefore, microorganisms play an important role in

all three major components of the soil P cycle (i.e. dissolution–precipitation,

sorption–desorption, and mineralization–immobilization).

Microbial P mobilization strategies, uptake and subsequent release, as well as

redistribution of P in soil may all affect the success of PSM in improving plant

growth. In particular, PSM may also compete with plants for any P released. Soil

solution P only increases when P solubilization (from soil minerals) and gross

mineralization (mineralization of SOM, re-mineralization of Po and Pi held in the

microbial biomass) exceed P immobilization (uptake and incorporation in the

biomass) and sorption to soil minerals. All these processes are driven by a wide

range of chemical and physical soil properties (e.g. mineral composition, SOM,

texture, structure, temperature, water content) and vegetation properties, making

temporal and spatial predictions of P availability in soil from added PSM difficult.

The mechanisms and processes involved in P mobilization by PSM in soil are

discussed in Sects. 7.3.1–7.3.6.

7.3.1 P Release Mediated by Changes in pH

The release of protons or hydroxide ions by microorganisms can significantly alter

the soil solution pH in the close vicinity of the exuding organisms, inducing

changes in mineral nutrient availability. Whereas only a few reports of microbial

P solubilization by alkalinization exist, microbial P solubilization via acidification

is well documented for several fungi and bacterial species (Gyaneshwar et al. 1999;

Illmer and Schinner 1992; Ben Farhat et al. 2009) and is often found to be

particularly successful when P is associated with Ca. Typically, the release of

protons is also linked to the extrusion of organic acid anions into the external

media (Arvieu et al. 2003; Casarin et al. 2003). The amount of protons released into

the external medium is often significantly influenced by N supply. In general, a

greater reduction in pH together with more solubilized P can be observed with

NH4
þ as the sole N source compared to NO3

�, due to the extrusions of protons to

compensate for NH4
þ uptake (Roos and Luckner 1984; Illmer et al. 1995; Sharan

et al. 2008). In contrast, Reyes et al. (1999) found a decrease in P solubilization by

Penicillium rugulosum from various P-bearing minerals (hydroxyapatite, FePO4,

AlPO4) when higher concentrations of NH4
þ were supplied. The authors attributed

these findings to the repressive effect of easily metabolized N sources on secondary

metabolic biosynthesis in fungi. The same study also showed that the assimilation

of amino acids (in this case arginine) as the sole N source can also lead to a decrease

in pH and enhanced mobilization of P.

For some microorganisms, NH4
þ-driven proton release seems to be the sole

mechanism to promote P solubilization. Asea et al. (1988) tested two fungi,

Penicillium bilaii and Penicillium fuscum, for their ability to solubilize phosphate

rock in the presence of NH4
þ or without N addition, and showed that only P. bilaii

maintained the ability to decrease the pH and mobilize P when no N was supplied.
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In a study of Pseudomonas fluorescens, the form of C supply (e.g. glucose versus

fructose) rather than N supply (e.g. NH4
+ versus NO3

�) had the greatest effect on

proton release (Park et al. 2009). This indicates that for different species, different

mechanisms are responsible for proton release, only partly depending on the

presence of NH4
+. Furthermore, Asea et al. (1988) reported a direct relationship

between mobilized P and pH for P. fuscum, whereas P. bilaii solubilized more P

than could be accounted for by pH change, indicating the presence of an additional

solubilization mechanism.

Despite the demonstration of pH changes as a potential P solubilization mecha-

nism, we must keep in mind that most published studies are carried out in vitro and

that conditions in the field may not be as conducive to significant acidification

occurring (e.g. due to a lack of labile N and C, which limits their activity in the bulk

soil). Furthermore, particularly calcareous soils possess a high pH buffer capacity,

which could limit the P-solubilizing effect. Gyaneshwar et al. (1999) showed that

the numbers of culturable microorganisms inducing a pH-reduction zone in the

growth medium were drastically reduced (from 104–106 to 102) when a buffered

medium with phosphate rock was used as the sole P source. Furthermore, the

buffered culture medium resulted in a reduced recovery of PSM, with only one

out of ten soil samples containing PSM. This indicates that early estimates of

effective PSM in soil (e.g. 103–106 g�1; Kucey et al. 1989) might significantly

overestimate reality. On the other hand, the majority of soil microbes cannot be

cultured but might potentially be capable of solubilizing different forms of Pi,

making real numbers of effective PSM in soil hard to predict. Nevertheless, since

microbial abundance and activity is particularly high in the rhizosphere, the com-

bined effort of proton (or hydroxide) extrusion by plants and microbes might be

sufficient to increase P availability for both groups of organisms. Additionally,

higher concentrations of CO2 in the rhizosphere originated from plant root and

microbial respiration might also contribute to a local drop in pH.

7.3.2 P Release Mediated by Organic Acid Anions

Acidification alone often does not fully explain the solubilization of mineral P

(Asea et al. 1988; Whitelaw et al. 1999). LMW organic acid anions (carboxylates)

released by microbes have been frequently found in Pi solubilization studies (Illmer

et al. 1995; Reyes et al. 1999; Patel et al. 2008). Reported organic acid anions

secreted by PSM include gluconic, 2-ketogluconic, citric, malic, malonic, oxalic,

succinic, lactic, tartaric and glycolic acids (Kucey et al. 1989; Gyaneshwar et al.

2002). Though they are commonly referred to as organic “acids” in the literature, it

has been pointed out by many authors that organic anions would be the more

appropriate terminology (Hinsinger 2001; Jones et al. 2003; Parker et al. 2005).

Due to the low acid dissociation constants (pKa) values of many organic acid anions

(Table 7.1), these LMW compounds are present as dissociated anions in the cytosol

of cells (pH ~7), as well as in soil across a wide pH range. Nevertheless, organic
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anion release is often found to be accompanied by medium acidification, but it is

important to note that it is not the organic anions that cause acidification, because

they are already in their dissociated forms when released into the soil. It is rather the

secretion of protons compensating the loss of net negative charges that can cause a

drop in pH.

The P-solubilizing effect of organic anions is either caused by their negative

charge or by their metal complexation properties (Table 7.2). Being anions, they can

mobilize Pi from metal oxide surfaces via ligand exchange or by ligand enhanced

dissolution of Fe or Al oxides and Ca phosphates, where the weakening of mineral

bonds due to prior organic anion adsorption and/or chelation liberates the occluded P.

Additionally, organic anion adsorption on metal oxide surfaces decreases the

positive surface potential (Filius et al. 1997), facilitating the release of adsorbed P.

Gluconic and 2-ketogluconic acid are frequently reported to be released by

bacteria (Rodriguez and Fraga 1999), and Gluconacetobacter diazotrophicus
mutants lacking their production capacity have been shown to partially lose their

P mobilization ability (Intorne et al. 2009). In contrast, gluconic, citric and oxalic

acid are often found to be released by fungi (Reyes et al. 1999; Whitelaw et al.

1999). In general, tri-carboxylic anions such as citrate show a higher potential in

solubilizing Pi than do di-carboxylic acids (gluconate, oxalate, etc.). There is

increasing evidence that the mobilization of Pi by particularly citrate (other organic

acid anions to a minor extent) is accompanied by a significant increase of Fe and Al

in the solution, indicating that mineral dissolution is the main mobilizing mecha-

nism (Gerke et al. 2000; Oburger and coworkers, unpublished data). Furthermore,

oxalate has been shown to be particularly efficient in mobilizing P in calcareous

soils (Str€om et al. 2005) due to its high affinity to form Ca precipitates. To our

knowledge, the behaviour of gluconic acid and 2-ketogluconic acid (unlike citric

and oxalic acid) in soils has not yet been thoroughly investigated.

The P mobilization efficiency of organic anions released by microbes and plants

is determined largely by soil properties (e.g. sorption sites, pH), as well as by the

Table 7.2 Stability constants

of some organic acid–metal

complexes determined at a

1:1 metal–ligand ratio at 25�C
and zero ionic strength

Organic anion Number of

carboxylic groups

Fe3+ Al3+ Ca2+

Citrate 3 11.5 7.9 4.9

Malate 2 7.1 6.0 2.7

Oxalate 2 7.5 6.1 4.9

Gluconate 1 37.2 2.0 1.2

Adapted from Martell and Smith (1977) and Jones (1998)

Table 7.1 Acid dissociation

constants (pKa) of some

organic acids implicated in P

solubilization

Acid Number of

carboxylic groups

pKa 1 pKa 2 pKa 3

Citric 3 3.15 4.77 6.40

Malic 2 3.40 5.13 –

Oxalic 2 1.27 4.28 –

Gluconate 1 3.86 – –
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quantity and characteristics of the compounds released. Reported concentrations of

organic acid anions released by cultured PSM range from a few micromolar (Illmer

et al. 1995) to 100 mM (Reyes et al. 1999; Gyaneshwar et al. 1999; Patel et al.

2008). Detected concentrations in bacterial and fungal cultures differ greatly with

incubation conditions (Illmer et al. 1995) and with different C sources (Reyes et al.

1999; Patel et al. 2008). It should be noted that organic acid anion exudation

patterns might be completely different in soil (e.g. due to the lack of available C

to synthesize the organic acid anions). In soil, sorption to metal oxide surfaces will

decrease the free organic anion concentration in solution, making predictions of

actual soil solution concentrations difficult. It has also been shown that the P-

solubilizing effect of organic acid anions is significantly reduced in soils rich in

carbonate or in Fe and Al (hydr)oxides (Str€om et al. 2005; Oburger et al. 2009).

Additionally, LMW carboxylates produced by microbes (and plant roots) can also

serve as a labile C substrate for the microbial community, thus removing them from

solution and reducing their P mobilization potential. The half-life of organic acid

anions in soil typically ranges from 0.5 to 12 h, suggesting that organic acid anions

need to be continually produced by PSM to maintain P dissolution over the lifetime

of a crop (Jones et al. 2003). However, microbial breakdown of organic acid anions

have been found to be drastically reduced in high-sorbing soils (Oburger et al. 2009;

Oburger and Jones 2009; van Hees et al. 2003), indicating the importance of

sorption processes to organic acid bioavailability and functional efficiency. Along-

side the direct stimulation of microbial growth and P solubilization from inorganic

sources, organic acid anions such as citrate, malate and oxalate can improve the

solubility of Po (e.g. phytate) making it more susceptible to enzymatic hydrolysis

(Otani and Ae 1999; Tang et al. 2006).

7.3.3 Exopolysaccharide-Mediated Release of P

To our knowledge, the role of HMW (non-enzymatic) microbial exudates (i.e.

mucilage, exopolysaccharides) in P solubilization from soil constituents has not

yet been directly investigated in situ. Gaume et al. (2000) showed that maize root

mucilage adsorbed onto synthetic ferrihydrite significantly decreased consecutive P

adsorption, but the investigated mucilage components were not able to mobilize

significant amounts of already adsorbed P. Nevertheless, microbial mucilages can

have an indirect effect on P availability through their important role in soil

aggregation and in increasing pore connectivity in soil (Aspiras et al. 1971), thereby

facilitating soil water retention and movement (Ionescu and Belkin 2009). Exopo-

lysaccharides (EPS) and biosurfactants are produced by microorganisms largely

in response to biofilm formation and stress. Studies on microbially produced EPS

have shown their ability to complex metals in soil (Al3+ > Cu2+ > Zn2+ > Fe3+ >
Mg2+> K+; Ochoa-Loza et al. 2001), from which it can be deduced that they must

in some way influence P solubility in soil. In pure culture, microbial EPS has been

shown to stimulate the dissolution of tricalcium phosphate synergistically with
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organic acid anions (Yi et al. 2008). Furthermore, the rate of dissolution appears

dependent on the microbial source and concentration of EPS. Although there is

some evidence to suggest that EPS production is stimulated under P deficiency, this

does not appear to be a universal phenomenon in bacteria (Dephilippis et al. 1991,

1993). Furthermore, EPS production seems to be more dependent on the rate of N

supply than on available P (Danhorn and Fuqua 2003; Wielbo and Skorupska

2008).

7.3.4 Siderophore-Mediated Release of P

Siderophores are complexing agents that have a high affinity for iron and are

produced by almost all microorganisms in response to iron deficiency. There are

approximately 500 known siderophores, with the majority of them being used by a

wide range of microorganisms and plants and some of them being exclusively used

by the microbial species and strains that produce them (Crowley 2007). Many

studies have reported the release of siderophores from PSM (Vassilev et al. 2006;

Caballero-Mellado et al. 2007; Hamdali et al. 2008c); however, siderophore pro-

duction has not been widely implicated as a P-solubilization mechanism. Consider-

ing the dominance of mineral dissolution over ligand exchange by organic acid

anions as a P-solubilizing mechanism (Parker et al. 2005), the potential role of

siderophores in enhancing P availability should be obvious. However, there is an

impressive body of literature concerning Fe mobilization by microbial sidero-

phores, but to the best of our knowledge only one study exists that has investigated

the effect of microbial siderophores on P availability. More than two decades ago,

Reid et al. (1985) investigated the ability to increase Fe and P diffusion of two

siderophores (desferrioxamine-B, desferriferrichrome) and the iron-chelating agent

EDDHA as compared to water using a root simulation technique. They found that

desferriferrichrome increased P diffusion 13-fold compared to water whereas

different concentrations of desferrioxamine-B exhibited only a small effect

(Fig. 7.2). Considering the occurrence of Fe phosphates in soil and, probably

even more important, the large P sorption capacity of Fe (hydr)oxides and consid-

ering the needs of microorganisms for Fe, the lack of knowledge about siderophore-

enhanced P solubilization is quite surprising.

7.3.5 Enzyme-Mediated Release of P

The biochemical mineralization of Po is mediated by either cell-wall-bound or free

phosphatase enzymes, whose release is mainly driven by P demand. The role of

these enzymes in P cycling is reviewed extensively elsewhere (Nannipieri et al.

2011); however, here we aim to present evidence relevant to the behaviour of PSM

in soil. Typically, extracellular phosphatases rather than intracellular or membrane-
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bound phosphatases are thought to be responsible for inducing large changes in soil

solution P concentration. However, experimental differentiation between exo- and

endo-enzyme activity still remains problematic.

Phosphatases or phosphohydrolases describe a broad group of enzymes that

catalyze the hydrolysis of both esters and anhydrides of H3PO4 (Tabatabai 1994).

Its activities have been shown to be inhibited by increasing concentrations of

orthophosphate (end-product) as well as other polyvalent anions (e.g. MoO4
2�,

AsO4
3�) and high concentrations of several metals [Zn, Hg, Cu, Mn (II), Fe (II)].

Lower concentrations of divalent cations (e.g. Ca, Mg, Zn, Co) have been found to

act as enzyme activators (Quiquampoix and Mousain 2005). Furthermore, adsorp-

tion to soil mineral or organomineral surfaces can also significantly alter enzyme

conformation and activity. Although sorption to the solid phase reduces enzymatic

activity, it can also help protect the enzymes from microbial attack or thermal

inactivation (Huang et al. 2005). Typically, phosphatases are held most strongly to

clay-sized particles. These results clearly show that the activity of enzymes released

from PSM are not simply related to their release rate but are also strongly influenced

by soil properties such as mineral composition, SOM and pH.

Among the variety of phosphatase enzyme classes released by PSM, phospho-

monoesterases (often just called phosphatases) are the most abundant and best

studied. Depending on their pH optima, these enzymes are divided into acid and

alkaline phosphomonoesterases and both can be produced by PSM depending upon

the external conditions (Kim et al. 1998; Jorquera et al. 2008). Typically, acid
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Fig. 7.2 Effects of the microbial siderophores desferrioxamine-B (DFOB) and ferrichrome on the

diffusion of (a) 55Fe or (b) 32P towards a root in a low pH soil. Water is shown as a control. Fe and

P were added to the soil as FeCl3 and KH2PO4, respectively. Overall the results indicate that some

microbial siderophores (e.g. ferrichrome) can stimulate both Fe and P solubilization in soil.

Adapted from Reid et al. (1985)

180 D.L. Jones and E. Oburger



phosphatases predominate in acid soils, whereas alkaline phosphatases are more

abundant in neutral and alkaline soils (Eivazi and Tabatabai 1977; Juma and

Tabatabai 1977, 1988; Renella et al. 2006). Although plant roots can produce

acid phosphatases they rarely produce large quantities of alkaline phosphatases,

suggesting that this is a potential niche for PSM (Juma and Tabatabai 1988; Criquet

et al. 2004). Laboratory studies have shown a gross mineralization potential of

1–4 mg P kg�1 soil day�1 (Lopez-Hernandez et al. 1998; Oehl et al. 2001b);

however, so far it has proved impossible to distinguish between enzymatic (bio-

chemical) and biological (microbial turnover) mineralization. It is also difficult to

differentiate between root- and PSM-produced phosphatases (Richardson et al.

2009a, b) but some evidence suggests that phosphatases of microbial origin possess

a greater affinity for Po compounds than those derived from plant roots (Tarafdar

et al. 2001). The relationship between PSM introduced into soil, phosphatase

activity and the subsequent mineralization of Po still remains poorly understood

(Chen et al. 2003). Controversial results have been reported about the correlation

between increased phosphatase activity and Pi concentrations in soil solution, with

several authors reporting no relationship between the two (Criquet et al. 2002,

2004; Olander and Vitousek 2000). Other groups found a positive correlation (Tate

and Salcedo 1988; Rojo et al 1990; George et al. 2002) and some observed a

negative relation between Pi concentrations and phosphatase activity (Ali et al.

2009). Considering the interactive complexity of biological, chemical and bio-

chemical processes of P mobilization in soils, these controversial findings are not

surprising but highlight the uncertainty about predicting the benefits of PSM

introduced into soil.

7.3.6 Release of P Held in P-Solubilizing Microorganisms

Although some of the P released by PSM will be captured by plants and other soil

organisms, it is inevitable that a large proportion will be immobilized in the PSM.

Release of P immobilized by PSM primarily occurs when cells die due to changes in

environmental conditions, starvation or predation. Environmental changes, such as

drying–rewetting or freezing–thawing, can result in so-called flush-events, a sudden

increase in available P in the solution due to an unusually high proportion of

microbial cell lysis (Turner et al. 2003; Butterly et al. 2009). Grierson et al.

(1998) found that about 30–45% of microbial P (0.8–1 mg kg�1) was released in

a sandy spodosol in an initial flush after drying–rewetting cycles within the first

24 h. However, the availability of P after these flush events is also likely to be

highly dependent on the P sorption properties of the soil because a large proportion

could become subsequently immobilized on the solid phase.

P is also released when microorganisms are grazed by microbivores (e.g.

nematodes, protozoa). Cole et al. (1978) showed that significant net P mineraliza-

tion occurred within 1 week in the presence of bacterial grazers, whereas the

absence of predators resulted in a constantly high P immobilization and no net P
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release after more than 3 weeks. SOM availability and its C:P ratio has also been

shown to have a significant impact on microbial P immobilization/re-mobilization

dynamics (Chauhan et al. 1979, 1981). Fresh organic matter inputs, particularly

easily available C sources, tend to increase microbial P followed by a subsequent

decline and increase in soil solution P if the substrate is depleted. However, the time

elapsed between P immobilization and re-mineralization is determined by substrate

quality and soil properties, with dynamics being less pronounced with more recal-

citrant organic matter (Oehl et al. 2001a, b). Overall, however, the release of P held

in PSM is poorly understood and certainly warrants further research.

7.4 P-Solubilizing Organisms

7.4.1 Bacteria

It has been known for a long time that significant variation in the ability to solubilize

P in soil exists within the bacterial community. Those that are known to enhance P

availability includes species of the common soil bacteriaPseudomonas, Azotobacter,
Burkholderia, Bacillus and Rhizobium. The recent isolation of a supersolubilizer

(Serratia marcescens) has also suggested that selected bacteria could be used to

develop environmentally friendly processes for fertilizer production (Ben Farhat

et al. 2009). Recent work on P. fluorescens strains isolated from a range of agricul-

tural fields has suggested that significant variation also exists within a single bacterial

species (Browne et al. 2009). Interestingly, in the study by Browne et al. (2009) P

fertilizer regime and crop type appeared to have little effect on the abundance of

pseudomonads in the rhizosphere (Fig. 7.3). However, it was clear that significant

variation exists within a single species linked to a single phylogenetic lineage.

Identification of the underlying geneticmechanisms, combinedwith work to enhance

their rhizosphere competence, may therefore provide more efficient biofertilizer

agents. Evidence from G. diazotrophicus also suggests that bacteria may operate

more than one P solubilization mechanism simultaneously (Intorne et al. 2009).

A study by Hariprasad et al. (2009) has also indicated that the selection for one

bacterial trait may not always be the best use of inoculation technology. For

example, they showed that rhizobacteria producing P-solubilizing indole acetic

acid (PSIRB) may prove better than either P-solubilizing rhizobacteria (PSRB) or

indole-acetic-acid-producing rhizobacteria (IRB) in isolation.

Many bacteria can also colonize the surface of mycorrhizal hyphae in soil

(hyphosphere) and, therefore, may contribute indirectly to P uptake by mycorrhizas

(and ultimately the plant) if they express P-solubilizing activity (Gonzalez-Chavez

et al. 2008). These bacteria can be found embedded in hyphal mucilage, on the

hyphoplane, between hyphal wall layers and even inside hyphae and are known to

include several common PSM species (Mansfeld-Giese et al. 2002). Further work is

required to elucidate their quantitative role in supplying P in comparison to the

mycorrhizas.
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7.4.2 Non-mycorrhizal Fungi

A range of non-mycorrhizal soil fungi have been screened and selected for their P-

solubilizing capacity. Of those identified, many are commonly found in agricultural

soils such as Penicillium spp., Mucor spp. and Aspergillus spp., which has been

shown to increase plant growth by 5–20% after inoculation (Dwivedi et al. 2004;

Babana and Antoun 2006; Wakelin et al. 2007; Gunes et al. 2009). In addition, a

range of Trichoderma spp. have also been identified and found to stimulate plant

growth both in the laboratory and field (Rudresh et al. 2005). As with many

ectomycorrhizal fungi, P-solubilizing non-mycorrhizal fungi (e.g. Emericella

Fig. 7.3 P solubilization by different isolates of Pseudomonas fluorescens obtained from agricul-

tural fields receiving either high or low inputs of fertilizer and under either a barley or wheat crop.

(a) Plate assay demonstrating the three Ca3(PO4)2 solubilization phenotypes used to classify

isolates: (1) No Ca3(PO4)2 solubilization, (2) weak Ca3(PO4)2 solubilization and (3) strong

Ca3(PO4)2 solubilization. All 752 isolated from the field were then spot-inoculated (six repeats)

on modified NBRIP agar, incubated for 6 days at 30�C. (b) Sampling strategy employed in the

study and the numbers of isolates with each P solubilization (PS) phenotype (strong, weak, or no P
solubilization activity) for each field plot. A total of 47 isolates were evaluated per plot. Adapted

from Browne et al. (2009)
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rugulosa, Penicillium spp.) appear to employ three strategies for mobilizing soil P,

namely acidification of the soil, the release of organic acid anions (e.g. citrate,

oxalate, gluconate) and the release of acid and alkaline phosphatases and phytase

(Yadav and Tarafdar 2007; Xiao et al. 2009).

7.4.3 Actinomycetes

The P-solubilizing ability of actinomycetes has attracted interest in recent years

because this group of soil organisms are not only capable of surviving in extreme

environments (e.g. drought, fire etc.) but also possess other potential benefits (e.g.

production of antibiotics and phytohormone-like compounds etc.) that could simul-

taneously benefit plant growth (Fabre et al. 1988; Hamdali et al. 2008a). Numerous

P-solubilizing actinomycete species have been isolated from the rhizosphere

(Barreto et al. 2008) and their presence in soil has been linked to enhanced

efficiency of P use (El-Tarabily et al. 2008). Further, re-inoculation of soil with

isolates selected for P solubilization has been shown to stimulate plant growth when

supplied with phosphate rock (Hamdali et al. 2008b). Overall, however, the taxo-

nomic groups and mechanisms of P solubilization within the actinomycetes remain

poorly elucidated. A study by Hamdali et al. (2008c) has indicted that approxi-

mately 20% of actinomycetes can solubilize P, including those in the common

genera Streptomyces andMicromonospora. In contrast to most fungi, most of the P-

solubilizing actinomycetes identified to date do not appear to acidify the external

medium. However, they do release large quantities of organic acid anions (e.g.

citrate, formiate, lactate, malate, succinate), which are implicated in the P dissolu-

tion process (Hoberg et al. 2005), and possibly other P dissolution-promoting

organic substances (Hamdali et al. 2010). After uptake, the P is stored in polypho-

sphate within the mycelium (Hamdali et al. 2010). One exception was reported by

Abdulla (2009), who showed that P solubilization occurred concomitantly with

acidification. A marine study has also suggested that actinomycetes may enhance P

availability through the release of phosphatases; however, the significance of this in

soil remains unknown (Sahu et al. 2007). Field trials inoculating P-poor soils have

shown significant yield benefits, although whether this was due to P or other

beneficial effects of the actinomyctes remains unknown. One potential application

of actinomycetes is to harness their thermo-tolerant properties to enhance P avail-

ability during the composting of municipal and animal wastes (Chang and Yang

2009).

7.4.4 Protozoa

As protozoa represent a major mechanism for regulating bacterial and fungal

numbers in soil, they both directly and indirectly influence soil P cycling (Alphei
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et al. 1996). If P-solubilizing microorganisms are introduced into soil, then proto-

zoal grazing can be expected to dramatically reduce their effectiveness (Rosenberg

et al. 2009; Pedersen et al. 2009). Although protozoa have the capacity to take up

and assimilate SOM, ultimately making P more bioavailable, the likelihood of

managing protozoal numbers in soil to harness this potential remains remote (due

to difficulties and cost of mass production of a protozoal biofertilizer and uncer-

tainty surrounding their potentially deleterious impact on microbial food webs in

soil).

7.4.5 Mesofaunal Interactions

Mesofauna are known to enhance P availability and cycling in a range of soils;

however, due to difficulties in their practical handling they are rarely used as a

management tool to directly manipulate nutrient availability in agricultural soils

(Lopez-Hernandez et al. 1993). Of significance, however, are the positive interac-

tions that may occur between mesofauna and PSM in soil. For example, Sreenivas

and Narayanasamy (2009) showed that the earthworm, Eisenia fetida, enhanced the
P-solubilizing ability of the fungus Aspergillus awamori, resulting in increases in

both soluble Pi and soluble Po. The mechanistic basis for this response currently

remains unknown. Similarly, Wan and Wong (2004) showed that earthworms

promoted growth and phosphatase production in the P-solubilizing bacteria Bacil-
lus megaterium and that this subsequently enhanced Pi availability in soil. Mba

(1994, 1997) identified earthworm casts as being a particular site of enhanced PSM

activity. In contrast, nematodes can be expected to dramatically reduce the amount

of PSM inoculated into soil (Pedersen et al. 2009). Although this may reduce the

effectiveness of P solubilization, it may also stimulate the release of P immobilized

in the PSM. For more information on P mesofaunal interactions, the reader should

consult Chapuis-Lardy et al. (2011).

7.5 Significance of PSM in the Field and Potential

for Management

It is notable that the conclusions of many publications on the subject state that PSM

hold great potential for development as a biofertilizer that can enhance soil fertility

and promote plant growth. In addition, others state that PSM could constitute a

novel and non-polluting biofertilizer product useful for the development of sustain-

able agriculture. Potentially this could be true, however, are we promising too

much, too soon? For any PSM product to be a commercial success and to be

accepted by farmers, a major perception change will be required within the agro-

chemical and agricultural industry. Typically, the industry is sceptical of products
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that cannot demonstrate a clear and positive benefit and that may be technically

difficult to administer to fields. For PSM to be accepted requires that the technology

is robust enough to be rolled out across wide geographical zones encompassing

different soil types, crops and abiotic stresses. Furthermore, there must be a tangible

economic benefit for farmer adoption because there are likely to be few legislative

drivers to encourage farmer adoption of PSM technology. The costs associated with

the environmental licensing of PSM products, particularly if they are genetically

engineered, may also be prohibitive. In our view, PSM technology is still in its

infancy and requires further optimization and refinement before commercial

release, at least into developed world markets. Critical evidence in support of our

view is presented below.

Typically, plant growth response trials with PSM have been carried out under

controlled conditions that are rarely representative of those in the field (e.g. in small

pots in the absence of mesofauna, under optimal conditions for plant growth and

with a high inoculation dose). It is known from bitter experience with plant-growth-

promoting rhizobacteria (PGPR) and N2 fixation inoculants, however, that the

positive growth responses obtained in the greenhouse often fail to reflect those

subsequently obtained in the field, the latter of which can show zero or even

negative yield responses (Streeter 1994). This is highlighted by Okon and Labandera-

Gonzalez (1994), who concluded that of the published N2-fixing Azospirillum field

trials, 30–40% showed no positive response and, when a response was reported, the

yield gain was very low (5–30% in comparison to uninoculated controls). This

highlights the uncertain world of microbial inoculants. Success is largely deter-

mined by the ability of the inoculum to remain alive long enough in soil to have an

appreciable benefit and to be able to compete with the indigenous microbial

community (Denton et al. 2003). Despite this, some PSM isolates have been

successfully translated from the laboratory to the field whilst others have failed

(Fernández et al. 2007). For example, field studies have shown that PSM applica-

tion can enhance foliar P concentration and increase efficiency of P use (Sud and

Jatav 2007; Malboobi et al. 2009). This effect is often dramatic when undertaken

with poor soils and low grade phosphate rock fertilizers (Sharma and Prasad 2003).

Although not noted byMalboobi et al. (2009), their results revealed a high degree of

dependence on geographical location and fertilizer dose. This context-specific view

is also taken by Sahin et al. (2004), who showed that the beneficial effects of PSM

on plant growth varied significantly depending on environmental conditions, bac-

terial strains, and plant and soil conditions. The success of PSM has also been

shown to be influenced by the use of agrochemicals and the addition of organic

fertilizers (Sutaliya and Singh 2005; Das and Debnath 2006). This suggests that

blanket recommendation for farmers will be difficult to formulate and that depres-

sions in yield may also be possible, an outcome clearly not welcomed by farmers

and that will undermine adoption of the technology. It is also clear that PSM cannot

provide a complete replacement for conventional fertilizers but simply a way of

reducing our reliance on them (i.e. the use of PSM as part of an integrated nutrient

management regime; Jilani et al. 2007; Sharma et al. 2009). Overall, across a range

of field trials, PSM application typically results in marginal increases in crop yield
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(0–20%) (Table 7.3; Sahin et al. 2004; Chen et al. 2008). Although there are only a

few reports of the potential savings, some studies have speculated that inoculation

with PSMmay be equivalent to a saving of between 100 and 150 kg P ha�1 in some

high-intensity horticultural production systems (Gunes et al. 2009). The potential P

savings in more conventional cropping systems, however, are expected to be much

less. Cost saving may also be made if the PSM repress fungal diseases, thereby

reducing the application of fungicides (Khan and Khan 2001). In a study in India,

the application of PSM induced yield increases of 0.1–0.2 tons ha�1 in rice and

0.1–0.5 tons ha�1 in wheat (Dwivedi et al. 2004).

In the case of legumes in particular there is great potential to co-inoculate with

N2-fixing Rhizobium sp. and PSM. Where this has been attempted, synergistic

effects have been reported whereby the co-inoculants enhance crop nodulation,

growth and nutrient uptake and improve the use and availability of added chemical

fertilizers (Sahin et al. 2004; Dadhich et al. 2006; Elkoca et al. 2008; Rugheim and

Abdelgani 2009; Sammauria et al. 2009). This co-inoculation improved yield by as

much as 30% in soybean and 10% in sugar beet and barley (Sahin et al. 2004;

Govindan and Thirumurugan 2005).

Similarly, field trials have indicated that synergistic effects may exist between

arbuscular mycorrhizal fungi (AMF) and PSM with co-application consistently

increasing crop growth, foliar N and P concentrations, grain quality and yield

(Khan and Zaidi 2007). In one of the most successful trials undertaken in Mali,

co-inoculating seeds with PSM and AMF showed that it was possible to obtain

wheat grain yields comparable to those produced from conventional inorganic N

and P fertilizers (Babana and Antoun 2006). However, the uncertainly of the

Table 7.3 Effect of the presence (+) and absence (�) of the P-solubilizing microorganism

Penicillium radicum inoculation on grain yield and protein levels in wheat grown under field

conditions

Grain yield (tons ha�1) Seed protein (kg ha�1)

(�) (+) (�) (+)

P applied (kg/ha)

0 2.1 2.3 213 226

5 2.6 3.1 254 299

10 3.2 3.3 328 315

15 3.3 4.1 307 407

20 3.5 4.1 379 375

Statistical analysis

Least significant difference (P ¼ 0.05)

Phosphate 0.6 64

P. radicum 0.4 41

Significance of effects

Phosphate P < 0.001 P < 0.001

P. radicum P < 0.05 n.s.

P � P. radicum n.s. n.s.

P fertilizer was added as single superphosphate. Values represent mean (n ¼ 3). n.s. indicates not
significant (P > 0.05). Adapted from Whitelaw et al. (1997)
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approach is highlighted by Wu et al. (2005), who showed that AMF inhibited any

PSM effect.

One of the major problems with interpreting field trial data is that the trials are

rarely matched with a mechanistic understanding of soil P cycling (i.e. measure-

ments of P availability and rates of cycling). Consequently, it is often difficult to

decide whether any observed increase in yield is due to a direct P-solubilizing effect

or some other effect (e.g. repression of pathogens, microbial production of indole

acetic acid or siderophores). This is highlighted in a classic study by deFreitas et al.

(1997), who showed that P solubilization was not the main mechanism responsible

for the positive growth response upon inoculation with PSM. Specifically, PSM

might increase root growth and/or mycorrhizal colonization, which subsequently

enhances soil exploration and subsequent P capture (Richardson et al. 2009a, b).

A more thorough review of the benefits of PGPR on root growth and function is

provided in Vessey (2003) and Lugtenberg and Kamilova (2009).

As discussed by Oberson et al. (2011), there is also potential to manage the

agronomic regime to influence P dynamics in soil. There is clear evidence that some

of these strategies (e.g. organic residue addition) can directly affect the size, activity

and structure of the microbial community and its associated P-solubilizing potential

(Bolton et al. 1985; Hu et al. 2009). For example, organic manures and composts

typically cause an initial stimulation in microbial activity and in Po and Pi solubili-

zation activity in soil (Takeda et al. 2009; Hu et al. 2009). However, longer-term

trials have shown that organic residues may in some cases reduce biological P

solubilization (Martens et al. 1992; Garcia-Gil et al. 2000). Similarly, crop types

could be used that are known to promote PSM activity in soil. For example, Oliveira

et al. (2009) provided evidence to suggest that maize cultivar varieties may

differentially stimulate PSM in soil. Similarly, Souchie and Abboud (2007) have

shown a soil type � genotype interaction regulating the abundance and type of

PSM in pigeonpea. This opens the potential for influencing PSM activity in soil;

however, translating this information into a reliable means of enhancing crop P

acquisition remains a long-term goal.

7.6 Conclusions and Future Research Directions

This chapter has highlighted the wide range of non-mycorrhizal microorganisms

that possess an innate capacity to enhance P cycling in soil. Presumably, this

functional group of microorganisms use their capacity to mobilize P to gain a

competitive advantage in an environment where resources can be growth limiting.

There appears to be two main strategies used by PSM for enhancing P availability in

soil, namely (1) the enhanced dissolution of P-containing minerals through a

combination of soil acidification and the release of metal complexing agents

(predominantly organic acid anions and siderophores), and (2) the enzymatic

breakdown and subsequent release of P from organic P. In terms of P cycling in

natural environments, it is likely that strategy (2) is most important in terms of the
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annual flux of P through the plant–soil system. However, in highly P-limiting

environments it is likely that strategy (1) becomes more important for mobilizing

highly insoluble mineral-bound P. Furthermore, P temporarily immobilized in the

microbial biomass may leave a significant proportion of Po in a potentially bio-

available form. Due to the in vitro procedures used to select PSM from soil (e.g.

Petri-dish culture), most research has focussed on the organisms that can accelerate

the dissolution of phosphate rock. Rarely are PSM isolated that have the capacity to

mobilize both organic and inorganic P (including Al- and Fe-P) in soil. To a large

extent, this limits their ability to work across a wide range of soil types with vastly

different properties. In terms of sustainable agriculture there is an urgent need to

find new ways to make soil P more available to crop plants. Consequently, PSM

isolated in the laboratory have been multiplied ex situ and then inoculated back into

soil, mostly in greenhouse studies and often at very high dose rates. Typically,

inoculation trials in pots show higher foliar P concentrations and a positive growth

response, especially when conditions are optimized to show an effect. However, the

results from field application of PSM are much more erratic. This is because many

PSM are not selected for their rhizosphere competence or for their ability to survive

extreme conditions, which are typical in many P-limiting soils. One major problem

when interpreting the results of PSM field trials is the lack of consideration or

quantification of P dynamics in the soil. Therefore, it remains difficult to differenti-

ate between a direct P effect and an indirect effect induced by the addition of large

amounts of PSM into soil (e.g. suppression of pathogens, stimulation of SOM

cycling upon the death of the PSM inoculum). In addition, the indirect effects of

PSM on plant growth (e.g. a hormone-induced stimulation of root growth or

suppression of root pathogens that are not linked to any P-solubilization mechanism)

also deserve more attention (Richardson et al. 2009b). If PSM are to be adopted by

industry and farmers, a greater mechanistic understanding of PSM behaviour in soil

is required. Specifically, a thorough understanding is required of their rhizosphere

ecology, genetic stability and the mechanisms associated with enhancing P avail-

ability in soils and with promoting plant growth .
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